Studying the Medium Response by Two Particle Correlations

John Chin-Hao Chen (for PHENIX Collaboration)

Department of Physics and Astronomy

Stony Brook University

Workshop on "Saturation, the Color Glass Condensate and Glasma: What Have we Learned from RHIC?"

Outline

- Medium modification in near and away side
- Comparison between ridge and shoulder
- The momentum flow

The jet is modified!

Phys. Rev. Lett. 98, 232302 (2007)

The awayside peak moved to $\sim \pi$ +/- 1.1 in central collisions!

The nearside is also modified!

2-D $\Delta\eta$ - $\Delta\phi$ correlations

Method

- Inclusive photon hadron $\Delta \eta \Delta \phi$ correlation
 - Trigger: inclusive photon
 - p_T: 2-3 GeV/c
 - Mostly π^0 decays
 - Not thermal photons!
 - Associated: inclusive charged hadron
 - p_T: 1-2, 2-3 and 3-5 GeV/c
 - $|\Delta \eta| < 0.7$

$\Delta\eta$ correlation in near-side

PRC 78 014901

- The ridge exists at low partner pT
- Au+Au is consistent with p+p at high partner pT

$\Delta \eta$ vs $\Delta \phi$ in near-side

PRC 78 014901

• The ridge extends only in $\Delta \eta$ direction

Yield in $\Delta \eta$ slices: peripheral

Yield in $\Delta\eta$ slices: 0-20% central

Decomposition method

- Fit away side jet with sum of three Gaussians to decompose components:
- Treat all components as Gaussian in shape
- Use ZYAM method to fix background level
- Head: punch through jet
- Shoulder: new peak either side of π (medium response ?!?!)

nearside enhancement vs centrality

05/11/2010

Is Ridge similar to bulk?

Ratio = ridge /(Comb. BG. in nearside)

Ridge/background ratio

 $N_{\mathsf{part}} \uparrow$, ratio \downarrow

 Y_{ridge} changes from 3% to 1% of the bulk when increase N_{part}

Ridge & shoulder both increase with centrality

Shoulder & ridge p_T spectra vs. p+p

- Both are softer than hard scattering.
- Ridge harder than shoulder?

 Shoulder not quite as soft as inclusive hadrons

Nearside/shoulder vs reaction plane

 Different reaction plane dependence in nearside and shoulder!

How do theorists think?

- Ridge:
 - Fluxtube?
 - Longitudinal flow?
 - Radial flow?
 - Back splash?
 - Momentum kick?
 - Recombination?

- Shoulder:
 - Mach cone?
 - Recombination?
 - Radial flow?

Where does the momentum go?

- Compare to pp, the awayside per trigger yield at high p_T is suppressed.
- At lower p_T, the awayside yield is enhanced.
- During the collision, the total transverse momentum is conserved
 - How does the jet momentum redistribute into the medium?

Momentum flow

- Weight the per trigger yield of each partner p_T bins with <p_T^{assoc}>
- → Ensemble averaged vector sum of associated particles.
 Vector sum is along the trigger direction

• e.g.
$$p_{T,near,total} = p_{T,ave} \int_{-\pi}^{\pi} \cos(\Delta\phi) \frac{Y_{near}}{\sigma_{near} \sqrt{2\pi}} exp(-\frac{(\Delta\phi)^2}{2\sigma_{near}^2}) d(\Delta\phi)$$

Near & away increase with centrality

Number of particles

p_T Weighted yield

Where does the momentum go?

 $p_{T} \text{ ratio } (\Delta \eta) = \frac{p_{T} \text{ carried by awayside component per } \Delta \eta}{p_{T} \text{ carried by nearside component per } \Delta \eta}$

awayside: head, shoulder, total awayside

Awayside p_T lost in head is recovered in shoulder

The p_T carried by ridge scales with the p_T carried by shoulder

Summary

- Ridge and shoulder are:
 - Similar in yields
 - Similar in inverse slope (ridge is harder)
 - Softer than hard scattering
 - Harder than inclusive hadron
 - Different in reaction plane dependence
- The momentum sum of head and shoulder scales with nearside in central $\Delta\eta$ region
- The pT carried by ridge scales with the pT carried by shoulder

Backup slides

Nearside yield vs reaction plane

Ridge yield is reaction plane dependent!

05/11/2010 24

